
Journal of Civil Engineering and Environmental Technology 
p-ISSN: 2349-8404; e-ISSN: 2349-879X; Volume 3, Issue 1; January-March, 2016, pp. 1-7 
© KrishiSanskriti Publications 
http://www.krishisanskriti.org/Publication.html 
 
 

Bayesian Probabilistic Finite Element Model 
Updating of the UCF (University of Central 

Florida) Benchmark Structure 
Ayan Das1 and Nirmalendu Debnath2 

1,2Department of Civil Engineering, National Institute of Technology, Silchar 
E-mail:1das.ayan53@gmail.com, 2nirmalendu@civil.nits.ac.in, 2nirmalendu.nits.civil@gmail.com 

 
 

Abstract—Finite Element (FE) model updating has gained much 
importance in recent time due to its contribution in predicting the 
behavior of physical system with high precision monitoring structural 
damages etc. In the present work, FE model updating of the 
University of Florida (UCF) benchmark structure, which is a scale 
bridge model, is carried out using Bayesian probabilistic approach. 
At first, a FE model of the bridge is created both using SAP-2000 and 
MATLAB-2013 based on the given geometry and material 
information. Subsequently the analytical natural frequencies and 
mode shapes are obtained. Then the model updating of the structure 
is performed using the incomplete modal data obtained from dynamic 
testing of the laboratory model. The Bayesian Probability applied in 
this paper uses a sequence of identified modal parameter data sets to 
find the most probable model as well as system modal frequencies 
and the full system mode shapes. It is seen that there is a good 
agreement between analytical and experimental results after FE 
model updating. 

1. INTRODUCTION 

Finite element method is a popular way of numerical 
modelling of a structure. But the experimental and numerical 
results do not agree with each other for various reasons. 
Hence, model updating is necessary to refine the numerical 
model of the structure so that it can predict the dynamic 
characteristics of the actual structure. 
The importance and emerging of FEM updating as a subject 
related to the design, construction & maintenance of 
mechanical systems and civil engineering structures can be 
well understood from [5,6, 14]. Now, regarding the various 
methods of model updating, many methods have been 
proposed. In most model updating methods difficulty arises in 
the sense that only limited number of sensors are available 
while experimenting on the structure and so incomplete mode 
shapes are obtained and also the modal frequencies obtained 
may not be necessarily the first few modal frequencies and 
also the order of modes are altered due to damage in the 
structure and so mode matching is required while minimizing 
the measurement error of modal frequencies and mode shape 
vector. But this difficulty is removed entirely by applying 
Bayesian probabilistic approach for the model updating 

procedure, which does not require information about the 
switching and missing modes. This method of model updating 
can be well understood in [3, 4, 7, 8, 9, 12, 13] and it proves to 
be an effective way of model updating specially when 
incomplete mode shape is obtained experimentally due to 
limited number of sensors. 
The Bayesian method, which is applied in this paper does not 
require matching measured modes with corresponding modes 
from the dynamical model. The method uses an iterative 
scheme involving a series of coupled linear optimization 
problems. Also, it does not require solving the eigenvalue 
problem of the FE model, instead, the eigen equations appear 
in the prior probability distribution to provide soft constraints. 
In the present work, the UCF (University of Central Florida) 
benchmark structure is considered for model updating by 
applying the Bayesian probabilistic theory and a refined model 
of the structure is obtained which has dynamic characteristics 
almost equal to the actual structure. 

2. UNIVERSITY OF CENTRAL FLORIDA (UCF) 
BENCHMARK STRUCTURE 

The University of Central Florida (UCF) Grid Benchmark was 
constructed under the guidance of Catbas et al. [1]. It is a scale 
bridge model that was designed as a grid system. The UCF 
benchmark structure serves as a test model for short to 
medium span highway bridges in terms of the structural 
response of the structure to ambient vibration. In this paper the 
model is updated using Bayesian Probabilistic approach 
considering the test details for the preliminary data for the 
benchmark structure prepared by Mustafa Gul, PhD student 
under Dr. F. NecatiCatbas. 
Details of the design and construction of the UCF grid are 
found in Burkett [2] and summarized here. The UCF grid, 
shown in Fig. 1, has two clear spans, each with a length of 
2.74 m (9 ft), and with seven transverse beams connecting the 
two longitudinal girders. To reduce the effect of support 
vertical movements, W12x26 sections were used aspiers, each 
witha length of 1.07 m(42in.) and fixedat the base.While the 
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photo in Fig. 1(a) is a generalphoto showing the experimental 
setup for the UCF grid, and includes both an  

 

(a) 

 

(b) 

Fig. 1: (a) Setup of UCF grid testing (b) UCF benchmark 
member connections (left) & boundary support (right). 

 

Fig. 2: Accelerometer and impact locations for dynamic testing 

actuator and a hammer, only the impact hammer data was used 
in this paper. As stated in Burkett [2], the transverse beams are 
connected into girders by two angle clips and two cover plates, 
using a total of 30,1 4ൗ inch bolts for each connection seen in 
Fig.1(b).The angle clips provide a shear connection while the 
cover plates on top and bottom provide a moment. The 
advantage to this connection is that there are many bolts to 
loosen and even remove to analyse scenarios such as zero 
moment transfer and “semi-rigid” connections. The UCF 
benchmark has complex boundary conditions as shown in Fig. 
2. The pier to girder connection was designed to behave as an 
ideal roller support. It consists of a cylinder sandwiched 

between two curved bearing plates which allow the translation 
and rotation in the plane of bending for the girders. Both 
girder and beams are A36 steel S3x5.7 standard sections. 
Eight accelerometers (PCB 393C) were used for dynamic 
testing on the UCF grid. Each accelerometer was placed 
vertically and the grid was excited at four different locations. 
Fig.3 shows the accelerometer and excitation locations for 
dynamic testing using an impact hammer (IPC 086D20) where 
AC1, AC2,…, AC8 indicates location of accelerometers and 
IM1,….,IM4 indicates impacthammer location. Based on the 
instrumentation of the structure, a multi-input multi-output 
data set with 4 sets of impact forces and 8 sets of acceleration 
time histories was created. 
A finite element model of the structure was created in 
SAP2000 as well as the FE dynamic analysis of the structure 
was done in MATLAB 2013, based on the design calculations 
and CAD drawings given in Burkett [2]. Fig.3. shows the FE 
model of the UCF grid structure.The UCF benchmark 
structure has been modelled using 3d frame elements, link 
elements etc. with proper support conditions at the base. To 
have the best a priori model for the purpose of finite element 
model updating, the authors tried to create the geometry of the 
UCF grid FE model as accurately as possible. To achieve this 
goal, the support columns have been extended to the centre of 
the rotation of roller supports, and the connections between 
the grid and the support members were modelled using 
vertical link elements; the six stiffness values of the boundary 
links can be adjusted to accurately represent the boundary 
conditions. The UCF benchmark FE model consists of 63 
frame elements and 6 link elements. The link elements are 
used to connect the girder to pier to make it a partially 
restrained connection. The number of degrees of freedom 
(DOFs) in this FE model is 316, including single degree 
offreedom for each link element. 

 
Fig. 3: Finite Element model of the UCF benchmark  

structure in SAP2000 
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3. EXTRACTION OF MODAL PARAMETERS 

3.1 Experimental Data 

The modal data obtained from dynamic test on the test model 
consists of a set of Nm modal frequencies and Nm incomplete 
mode shapes. These modal data can be obtained from ambient 
or forced vibration test data using any reliable modal 
parameter identification method. In this paper, the modal data 
consists of Frequency Response Functions (FRFs) for the 
outputs due to impact test at specified input locations on the 
structure. 

3.2 Complex Mode Indication Function (CMIF) Method 

A simple algorithm based on singular value decomposition 
(SVD) methods applied to multiple reference FRF 
measurements, identified as the Complex Mode Indication 
Function (CMIF), was first developed for traditional FRF data 
in order to identify the proper order of the system equation. 
The CMIF is based upon the singular value decomposition of 
the FRF matrix, containing all possible input –output FRF 
combinations. The diagonal Singular Matrix ([Σ]) is used as 
the CMIF. It indicates the existence of real (normal) or 
complex modes and also gives the relative magnitude of each 
mode. It is also capable of yielding the corresponding mode 
shape and/or participation vector. The CMIF plot for the test 
data obtained from the UCF structure is shown in Fig 4. 

4. BAYESIAN PROBABILISTIC APPROACH  

4.1. Structural Model Class  

The structural model class C, is based on Nd degrees of 
freedom (DOFs) linear structural models parameterized by the 
model parameters θ. Considering linear behaviour of the 
structural dynamic for the identification purposes, a 
convenient parameterization for the stiffness matrix is- 

1
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O i i
i

K K K


 
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(1) 

 
Fig. 4: Complex Mode Indicator Function (CMIF) plot 

where, 

Ki= the constant matrix independent of θ which can be 
obtained from FE-model of the structure. 

Nθ = number of stiffness parameters. 

K0 = the sub-structure contribution to global stiffness matrix 
from those elements where no parameterization is considered. 

θifor i=1,2….. Nθ are the stiffness parameters will need to be 
updated in every iteration based on observed data from test 
structure. 

The mass matrix could be parameterized using a similar sub-
structuring approach, but the writers assume here that it is 
known with sufficient accuracy from structural drawings so 
that θ denotes only stiffness-related parameters. 

4.2. Formulation of Bayesian Probability Equation 

Let ‘D’ denotes the observed data from the tested structure, ‘θ’ 
are the model parameters to be updated and as stated above 
‘C’ is the structural model class. From Bayesian statistics, it is 
evident that known and unknown parameters are needed. 
Here, ‘D’ is the known quantity and ‘θ’ is the unknown 
quantity. Posterior probability of an unknown quantity is the 
probability distribution of the quantity, treated as a random 
variable, conditional on the evidence obtained from an 
experiment or survey. 

Hence posterior or updated probability of the unknown model 
parameters can be expressed by Bayes’ theorem: 

( | , ) ( | )( | , )
( | )

p D C p Cp D C
p D C

 
 

 (2) 
where, 

p(θ|D,C) = the posterior probability density function (PDF) of 
the model parameters given the observed modal data D and 
model class C. 

p(θ|C) = the prior PDF of the model parameters based on 
engineering and modelling judgment. 

p(D|θ,C) = likelihood function. 

p(D|C)= normalizing constant. 

4.3 Formulation of Prior-probability Distribution Function 

In Bayesian statistical inference, a prior probability 
distribution is the probability distribution that would explain 
one’s beliefs about this quantity before some evidence is taken 
into account. 

In this paper, the prior probability density function (PDF) for 
experimental eigenvalues ߣ = [λ (1) , λ (2) ,…., λ (Nm)]T and 
system eigen vectors ø = [ø (1)T ,ø(2)T,…,ø(Nm)T]T is chosen as : 

2
1( , | , ) exp ( , ; )
2 gp C c J         

 (3) 
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whereܿଶis a normalizing constant and the goodness-of-fit 
function is given by: 

1( , ; ) T
g eqJ A A      (4) 

where, 
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Here, the prior covariance matrix Σeq controls the size of the 
equation errors, based upon which the prior probability density 
function (PDF) is formulated. The uncertainty in the equation 
errors for each mode are modelled as independent and 
identically distributed, so: 

2
d meq N Neq I

 (5) 

where
d mN NI denotes the NdNmx NdNm identity matrix and σeq

2 is 
a prescribed equation-error variance, which allows for explicit 
treatment of modelling error as the parametric models for the 
stiffness matrix, and hence the eigen-equation, is never exact 
in practice. 
The prior PDF ( , | , )p C    implies that, given a class of 
dynamical models and before usingthe dynamic test data, the 
most probable values of λand φare those that minimize the 
Euclidean norm (2-norm) of the error in the eigen equation for 
the dynamical model. This implies that the prior most 
probable values of λand φare the squared modal frequencies 
and mode shapes of a dynamical model, but these values are 
never explicitly required. This prior PDF will have multiple 
peaks because there is no implied ordering of the modes here. 
The prior PDF for all the unknown parameters is given by: 

( , , | ) ( , | , ) ( | )p C p C p C        (6) 

where the prior PDF p(θ|C) can be taken as a Gaussian 
distribution with mean θη representing the nominal values of 
the model parameters and with covariance matrix Σθ. 
4.4 Formulation of Likelihood-probability Distribution 
Function 

Likelihood function is a function of the parameters of a 
statistical model. In informal contexts, “likelihood” is often 
used as a synonym for “probability” .But in statistical usage. 
A distinction is made depending on the roles of the outcome or 
parameter. Probability is used when describing a function of 
the outcome given a fixed parameter value. Likelihood is used 
when describing a function of a parameter given an outcome. 
The likelihood of a set of parameter values, θ , given outcome 
x is equal to the probability of these observed outcomes given 
those parameter values, i.e. 

L(θ/x) = P(x/ θ) 

In this paper, to construct the likelihood function, the 
measurement error εis introduced: 

൤ መߣ
෡ߖ
൨=൤  ௢ø൨ + ε (7)ܮߣ

Here, εis the difference between measured eigenvalues, mode 
shapes and analytical eigenvalues, mode shapes. A Gaussian 
probability model is chosen for ε ϵ ( 1)m oN NR  with zero mean 
and covariance matrix Σε , which can be obtained by Bayesian 
modal identification methods 
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Nm = Number of measured eigenvalues. 

No = Number of observed degrees of freedom. 
( )m

 ϵ RN
o gives the observed components of the system eigen-

vector of the mth mode . 
( )m




gives the corresponding observed system eigenvalue 
from dynamic test data. 

Lo= NmNox NmNd observation matrix of ‘1s’ or ‘0s’ that picks 
the components of ø corresponding to the No measured DOFs. 

The likelihood function is therefore, 
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 (8) 

 
which is a Gaussian distribution with mean [ߣ T , (L0ø)T]T and 
covariance matrix Σε . 

4.5 Formulation of Posterior-probability Distribution 
Function 

In Bayesian probabilistic statistics, posterior probability is the 
conditional probability that is assigned after the relevant 
evidence or background is taken into account. In this paper, 
the posterior PDF for the unknown parameters is given by the 
Bayes’ theorem: 
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(9) 

The most probable values of the unknown parameters can be 
found by maximizing this PDF. The objective function is 
obtained by taking the negative logarithm of the posterior PDF 
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without including the constant that does not depend on the 
uncertain parameters. Hence the objective function is defined 
as: 

21 ( ) ( )
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Here, ║.║ denotes the Euclidean norm. Hence the objective 
function is minimized instead of maximizing the posterior 
PDF. 

4.6 Linear Optimization Formulation 

Since sensors in the test model are placed only at specified 
locations of grid structure, the mode shapes are measured with 
incomplete mode shape components but the mode shapes are 
measured with high accuracy. Therefore, the sequence of 
optimization starts from computing the missing components of 
the mode shapes. The entire process of linear optimization of 
the objective function is well explained in [13]. 

Iterative algorithm 

The iterative procedure consists of the following steps: 

1. First set the nominal values of the updatedparameters 
θ*=θη and the eigenvalues as the measured values ߣ* 

 .መ.The updated stiffness matrix is K* = K(θ*)ߣ=

2. Update the estimates of the system eigenvectors ø(m)*, 
m=1,2,…..,Nmby minimizing the objective function in 
equation (10) with respect to ø so that the optimal vector 
ø* is then obtained. 

3. Update the estimates of the system eigenvalues 
 m=1,2,….,Nmby minimizing the objective function in,*(m)ߣ
equation (10) with respect to ߣ so that the optimal vector 
 .is then obtained*ߣ

4. Update the estimates of the model parameters θby 
minimizing the objective function in equation (10) with 
respect to ߠ so that the optimal vector ߠ* is then obtained. 

5. Iterate the previous steps 2,3 and 4 until the model 
parameters in ߠ*satisfy some convergence criterion, 
thereby giving the most probable values of the model 
parameters based on the modal data. 

5. UPDATING OF THE UCF STRUCTURE 

5.1 Parameterization of Stiffness matrix 

For each frame element, four stiffness parameters for each 
frame element are considered for parameterization of the 
stiffness matrix, making a total of 252 stiffness parameters 

 ,4.= Kl,tr+(l-1)4ߠ ,3 =Kl,by+(l-1)4ߠ ,2= Kl,bz+(l-1)4ߠ ,1.= Kl,ax+(l-1)4ߠ
l=1,2,….., 63 where the index l represents the frame number 
and ‘ax’, ‘bz’, ‘by’, ‘tr’ represent the axial component, the 
bending componentabout z-axis, , the bending 
componentabout y-axis and the torsional component of the 
element stiffness matrix respectively. Also one parameter each 
is considered for 6 link elements, giving a total of 258 
stiffness parameters. 

Four stiffness parameters considered for each frame element 
are as follows- 

=l,1ߠ
஺೗ா೗
௅೗

= l,2ߠ,
ா೗ூ೥,೗

௅೗
య = l,3ߠ ,

ா೗ூ೤,೗

௅೗
య = l,4ߠ ,

ீ೗௃,೗

௅೗
 

5.2 Model Updating Results 

The experimental data viz. the natural frequencies and mode 
shape vectors are obtained as given earlier. For the model 
updating procedure five initial modes of the structure 
subjected to vibration are considered. The experimental modal 
frequencies of the structure are 22.37, 27.01, 33.38, 40.91, 
64.93 Hz and partial mode shapes of 8 components.The 
identified modal frequencies are shown in second column of 
Table 2.and are referred to as target frequency. 
Finite Element Model (FEM) updating of the structure is done 
using the proposed method mentioned earlier and an optimal 
model class has been identified based on a large evidence with 
1% coefficient of variations of the measurement error of the 
squared modal frequencies and mode shapes for all modes. 
The nominal values of the element stiffness parameters are 
selected from a uniform distribution over 2ߠ෨to 3ߠ෨, where ߠ෨ is 
the actual stiffness parameter. The Table2. shows the initial 
target and identified values of the modal frequencies, modal 
assurance criteria (MAC) values and correlation coefficients 
of corresponding modes before and after updating. It is clearly 
seen that the updated modal frequencies are very close to the 
target values. Also MAC values and correlation coefficient 
values are improved due to the updating procedure. 
            In Fig 5., the iteration histories of few stiffness 
parameters are shown and in Fig 6., the comparison in the 
correlation matrix between experimental and model shapes 
before and after updating are shown and it is clearly seen that 
the correlation coefficients and MAC values get improved due 
to model updating which indicates that the updated mode 
shapes get close to experimental modes. Also, the updated 
values of few of the representative parameters are shown in 
Table 1. 
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Fig. 5: Iteration histories of few representative  
stiffness parameters 

Table 1: Updated values of few representative  
stiffness parameters 

Parameter Sl. 
No. 

Stiffness parameter 
value(before updating) 

(kN/m) 

Stiffness parameter 
value (after updating) 

(kN/m) 
1 1921052.63 4697645.26 
2 1921052.63 4802308.71 
3 1921052.63 4339442.37 
4 1921052.63 4724461.30 
5 313811.18 784527.97 
6 313811.18 456627.48 
7 313811.18 774761.39 
8 183997.23 50976.39 
9 648.74 159.02 
10 150122.69 366641.07 

 
Table: 2 Results of updated modal frequencies,  

MAC values and Correlation Coefficients 

Experimental 
modes 

Target 
values 

Initial 
Values 

Updated 
values MAC values Correlation 

coefficient 

Order of 
modes f(Hz) f(Hz) f(Hz) Initial Updated Initial Upd

ated 

1.Vertical 
Bending 22.31 23.13 22.22 .1153 .9999 -.3592 .99 

2.Vertical 
Torsion 26.93 27.77 26.34 .1259 .9997 -.3852 .99 

3.Vertical 
Bending 33.375 38.08 32.83 .0144 .9750 -.0633 .97 

4.Vertical 
Torsion 40.75 52.77 39.74 .0812 .9984 .3064 .99 

5.Vertical 
Bending 64.68 54.52 65.80 .0250 .9995 .1571 .99 

 

 

Fig. 6: Comparison of correlation matrix profile of experimental 
and model modes before and after updating 

6. CONCLUSION 

Dynamic testing of a structure results in incomplete modal 
data and also the result is subjected to errors due to noise in 
measurement procedures. Also FE modelling of the structure 
is subjected to modelling errors. Hence, actual representation 
of the structure is not possible. But by using Bayesian 
probabilistic model updating, the uncertainties in measurement 
and modelling errors are limited to find a baseline 
(undamaged) structure. The model parameters are updated 
following an iterative procedure involving linear optimization 
so that the most probable parameters are obtained, such that 
frequencies and mode shapes of the updated model is in close 
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correlation with that obtained from experimental results. The 
advantage of this method is that the incomplete mode shape 
data obtained experimentally does not cause any problem and 
the updated model can be efficiently obtained. 
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